Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oilfield.
نویسندگان
چکیده
Methanogenic communities that degrade alkanes have been reported. However, little is known about the key players involved in the process. Methanogenic hexadecane-degrading consortia were enriched from an oilfield (Shengli, China). The microbial dynamics during the transfer incubations were monitored using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of 16S rRNA genes in combination with cloning and sequencing. The archaeal community shifted from a predominance of aceticlastic Methanosaeta during early cultivation to a substantial increase in hydrogenotrophic Methanoculleus in the highly enriched culture. Bacterial T-RFs 161 and 164 bp were consistently detected during the incubation and became dominant in the highly enriched culture. T-RF 161 bp primarily represented uncultured Waste Water of Evry 1 bacterium, which was possibly associated with Candidatus Cloacamonas acidaminovorans (99.7% sequence similarity). T-RF 164 bp could be assigned to both Thermotogaceae, with the closest relative being Candidatus Mesotoga sulfurreducens (similarity of 97%) and Syntrophaceae, with Smithella propionica as the closest relative (similarity of 96-97%). These bacterial lineages were potentially capable of syntrophic interactions with methanogen partners during hexadecane degradation. Partial assA genes (encoding the α-subunit of alkylsuccinate synthase) were also detected, implying that the mechanism of fumarate addition may function in the hexadecane activation.
منابع مشابه
DNA-SIP Reveals That Syntrophaceae Play an Important Role in Methanogenic Hexadecane Degradation
The methanogenic degradation of linear alkanes is a common process in oil-impacted environments. However, little is known about the key players involved in this process. Here, the hexadecane-degrading organisms in a methanogenic, hexadecane-degrading consortium designated M82 obtained from Shengli oilfield and maintained at 35°C for over 4 years, were identified by DNA-stable isotope probing wi...
متن کاملCoexistence and competition of sulfate-reducing and methanogenic populations in an anaerobic hexadecane-degrading culture
BACKGROUND Over three-fifths of the world's known crude oil cannot be recovered using state-of-the-art techniques, but microbial conversion of petroleum hydrocarbons trapped in oil reservoirs to methane is one promising path to increase the recovery of fossil fuels. The process requires cooperation between syntrophic bacteria and methanogenic archaea, which can be affected by sulfate-reducing p...
متن کاملRelationship Between Cell Surface Hydrophobicity and Degradation of Hexadecane
Some properties of compounds in degrading bacteria are required for biodegradation of contaminants to higher performance. Those strains which have a high percentage of these features are more effective at biodegradation. The present experiments were designed to measure these parameters. In this study, measurement of cell surface hydrophobic-degrading bacteria was designed which oil was separate...
متن کاملRelationship Between Cell Surface Hydrophobicity and Degradation of Hexadecane
Some properties of compounds in degrading bacteria are required for biodegradation of contaminants to higher performance. Those strains which have a high percentage of these features are more effective at biodegradation. The present experiments were designed to measure these parameters. In this study, measurement of cell surface hydrophobic-degrading bacteria was designed which oil was separate...
متن کاملDraft Genome Sequences of Three Smithella spp. Obtained from a Methanogenic Alkane-Degrading Culture and Oil Field Produced Water
Two draft genomes affiliated with Smithella spp. were obtained from a methanogenic alkane-degrading enrichment culture by single-cell sorting and metagenome contig binning, and a third was obtained by single-cell sorting of oil field produced water. Two genomes contained putative assABC genes encoding alkylsuccinate synthase, indicating genetic potential for fumarate activation of alkanes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 83 3 شماره
صفحات -
تاریخ انتشار 2013